- Please check that this question paper contains 4 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 34 questions.

GENERAL INSTRUCTIONS :

1. All question are compulsory.
2. The question paper consists of 34 questions divided into four sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . Section - A comprises of 10 question of 1 mark each. Section - B comprises of 8 questions of 2 marks each. Section - C comprises of 10 questions of 3 marks each and Section - D comprises of 6 questions of 4 marks each.
3. Question numbers 1 to 10 in Section - A are multiple choice questions where you are to select one correct option out of the given four.
4. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one lf the alternatives in all such questions.
5. Use of calculator is not permitted.
6. An additional 15 minutes time has been allotted to read this question paper only.

सामान्य निर्देश :

1. सभी प्रश्न अनिवार्य हैं।
2. इस प्रश्न पत्र में 34 प्रश्न है, जो चार खण्डों में अ, ब, स व द में विभाजित है। खण्ड - अ में 10 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड - ब में 8 प्रश्न हैं और प्रत्येक प्रश्न 2 अंको के हैं। खण्ड - स में 10 प्रश्न हैं और प्रत्येक प्रश्न 3 अंको का है। खण्ड - द में 6 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको का है।
3. प्रश्न संख्या 1 से 10 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चुनें।
4. इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 1 प्रश्न 2 अंको में, 3 प्रश्न 3 अंको में और 2 प्रश्न 4 अंको में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
5. कैलकुलेटर का प्रयोग वर्जित है।
6. इस प्रश्न-पत्र को पढ़ने के लिऐ 15 मिनिट का समय दिया गया है। इस अवधि के दौरान छात्र केवल प्रश्न-पत्र को पढेंगे और वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगें।

Q. 5	What is the distance between two parallel tangents of a circle of radius 4 cm ? (A) 12 cm (B) 4 cm (C) 8 cm (D) none Ans c
Q. 6	If Figure is a sector of a circle of radius 10.5 cm , find the perimeter of the sector. (Take $\pi=22 / 7$) n (A) 32 cm (B) 11 cm ((C) 66 cm (D) none Ans a
Q	If α, β are roots of the equation $x^{2}+5 x+5=0$, then equation whose roots are $\alpha+1$ and $\beta+1$ is (a) $x^{2}+5 x-5=0$ (b) $x^{2}+3 x+5=0$ (c) $x^{2}+3 x+1=0$ (d) none of these Ans.c
Q	The length of the tangent from a point A at a distance of 5 cm from the centre of the circle is 4 cm . What will be the radius of the circle? (A) 3 cm (B) 4 cm (C) 3 m (D) none Ans a
Q	The radii of the circular bases of frustum of a right circular cone are 12 cm and 3 cm and height is 12 cm . Find the total surface area (a) $378 \pi \mathrm{~cm}^{2}$ (b) $2268 \pi \mathrm{~cm}^{2}$ (c) $378 \mathrm{~cm}^{2}$ (d) none of these Ans.a
	An electrician has to repair an electric fault on a pole of height 6 m . he needs to reach a point 2.54 m below the top of the pole. What should be the length of ladder that he should use which when inclined at an angle of 60° to the horizontal would enable him to reach the desired point? (take $\sqrt{3}=1.73$) (a) 3.46 m (b) 4 m (c) 5.19 m (d) 7.5 m Ans.b
	SECTION - B
Q. 11	In what ratio does the point $\mathrm{P}(2,-5)$ divide the line segment joining $\mathrm{A}(-3,5)$ and $\mathrm{B}(4,-$ 9)? Sol. $\begin{array}{ccccc} (-3,5) & k & (2,-5) & 1 & (4,-9) \\ \mathrm{A} & \mathrm{P} & \mathrm{~B} \end{array} \text { Let } \mathrm{AP}: \mathrm{PB}=k: 1$ Coordinates of $\mathrm{P}=$ Coordinates of P $\begin{aligned} & \left(\frac{4 k-3}{k+1}, \frac{-9 k+5}{k+1}\right)=(2,-5) \ldots \text {.(Using Section formula) } \therefore \frac{4 k-3}{k+1}=\frac{2}{1} \Rightarrow 4 \mathrm{k}-3=2 \mathrm{k}+2 \Rightarrow 4 k \\ & -2 k=2+3 \Rightarrow 2 \mathrm{k}=5 \Rightarrow k=5 / 2 \therefore \text { Required Ratio }=\mathrm{k}: 1=5 / 2: \mathbf{1}=\mathbf{5}: \mathbf{2} \end{aligned}$
Q. 12	PQRS is a square land of side 28 m , Two semicircular grass covered portions are to be made on two of its opposite sides as shown in Figure 4. How much area will be
Q. 13	Prove that the point $(\mathrm{a}, 0),(0, \mathrm{~b})$ and $(1,1)$ are collinear if $\frac{1}{a}+\frac{1}{b}=1$. OR Find a point on the y-axis which is equidistant from the points $A(6,5)$ and $B(-4$, 3).Sol. Let $(0, y)$ be a point on the y-axis equidistant from $A(6,5)$ and $B(-4,3)$ $\Rightarrow \mathrm{PA}=\sqrt{(6-0)^{2}+(5-y)^{2}} \quad$ Now, $\mathrm{PA}=\mathrm{PB} \Rightarrow(\mathrm{PA})^{2}=(\mathrm{PB})^{2} \ldots$ (Squaring both $\begin{aligned} & =\sqrt{y^{2}-10 y+61} \\ & =\sqrt{(-4-0)^{2}+(3-y)^{2}} \end{aligned} \cdots\left[\begin{array}{l} \text { Using } \\ \text { Distance } \\ \text { formula } \end{array}\right]$ $=\sqrt{y^{2}-6 y+25}$ sides) $\Rightarrow y^{2}-10 y+61=y^{2}-b y+25 \Rightarrow y^{2}-10 y-y^{2}+6 y=25-61 \Rightarrow-4 y=-36 \Rightarrow \mathrm{y}=9 \therefore$

	Using distance formula, we have $\left.\left\{(5-2)^{2}+(5-9)^{2}\right\}=\{a-2)^{2}+(5-9)^{2}\right\}+\left\{(5-a)^{2}+(5-5)^{2}\right\}$ $\begin{array}{ll} & 25=2 a^{2}-14 a+45 \\ 9+16=a^{2}+4-4 a+16+25+a^{2}-10 a & 2 a^{2}-14 a+20=0=a^{2}-7 a+10=0 \\ & a^{2}-5 a-2 a+10=0 \\ & a(a-5)-2(a-5)=0 \Rightarrow(a-2)(a-5)=0 \Rightarrow \end{array}$ Either $\mathrm{a}-2=0$ or $\mathrm{a}-5=0 . \mathrm{a}=2$ or $\mathrm{a}=5$ but a cannot be 5 . [if $\mathrm{a}=5$, then point B and C coincides $\left.a=2 \text { Now } \operatorname{area}(\triangle A B C)=\frac{1}{2} \times A B \times B C=\frac{1}{2} \sqrt{\left[(2-2)^{2}+(9-5)^{2}\right.}\right] \times \sqrt{\left.(5-2)^{2}+(5-5)^{2}\right]}=\frac{1}{2} \times 4 \times 3=6 \text { sq.units }$
Q. 21	If the $10^{\text {th }}$ term of an A.P. is 47 and its first term is 2 , find the sum of its first 15 terms. Sol. Let a be the first term and d be the common difference of an A.P. $a_{10}=47, a=2$ (Given), \ldots (i) $\Rightarrow a+9 d=47\left[\because a_{n}=a+(n-1) d\right] \Rightarrow 47=2+(10-1) d$ $\Rightarrow 47=2+9 \mathrm{~d} \Rightarrow 9 d=47-2=45 \therefore d=\frac{45}{9}=5 \mathrm{~s}_{n}=\frac{n}{2}[2 a+(n-1) d] \therefore \mathrm{s}_{15}=\frac{15}{2}[2(2)+(15-1)$ $(5)] \Rightarrow \mathrm{S}_{15}=\frac{15}{2}[4+(14)(5)] \Rightarrow \mathrm{S}_{15}=\frac{15}{2}[4+7 \mathrm{C}] \Rightarrow \mathrm{S}_{15}=\frac{15}{2}[74] . \therefore \mathrm{S}_{15}=15(37)=555$
Q. 22	The coordinates of the vertices of $\triangle \mathrm{ABC}$ are $\mathrm{A}(4,1), \mathrm{B}(-3,2)$ and $\mathrm{C}(0, k)$. Given that the area of $\triangle \mathrm{ABC}$ is 12 units 2, find the value of k. Sol. Ar $(\triangle A B C)=12$ units 2 (Given)
Q. 23	The product of two consecutive odd numbers is 483. find the numbers. Ans. $(2 x+1) \mathrm{X}(2 \mathrm{x}+3)=$ 483. Required nu is 21,23
Q. 24	All Aces, Jacks and Queens are removed from a deck of playing cards. One card is drawn at random from the remaining cards. Find the probability that the card drawn is : (a) a face card(b) not a face card. Sol. Total number of cards $=52$ Cards removed (all Aces, Jacks and Queens) $=12 \therefore$ Remaining cards (Total) $=52$ $12=40$. Remaining face cards $=4$ (all four kings) $P($ event $)=\frac{\text { Total number of favourable outcomes }}{\text { Total number of possible outcomes }} \mathrm{P}$ (getting a face card) $=\frac{4}{40}=\frac{\mathbf{1}}{\mathbf{1 0}} \mathrm{P}$ (not getting a face card) $=1-\frac{1}{10}\left[\begin{array}{l}\because \because(\text { not } A) \\ =1-\mathrm{P}(\mathrm{A})\end{array}\right]^{10}=\frac{\mathbf{9}}{\mathbf{1 0}}$.
Q. 25	In Fig. 3 the in-circle of $\triangle A B C$ touches the sides $B C, C A$ and $A B$ at D, E, and F respectively. If $A B=A C$, prove that $B D=C D$. Sol. Given : The incircle of $\triangle A B C$ touches the sides $B C, C A$ and $A B$ at D, E and F respectively. $\mathrm{AB}=\mathrm{AC}$ To prove BD CD Proof: Since the lengths of tangents drawn from an external point to a circle are equal \therefore We have $\mathrm{AF}=\mathrm{AE} \ldots$ (i) $\mathrm{BF}=\mathrm{BD} \ldots$...(ii) $\mathrm{CD}=\mathrm{CE}$ Adding (i), (ii) and (iii), we get $\mathrm{AF}+\mathrm{BF}+\mathrm{CD}=\mathrm{AE}+\mathrm{BD}+\mathrm{CE} \Rightarrow \mathrm{AB}+\mathrm{CD}=\mathrm{AC}+\mathrm{BD}$ But $\mathrm{AB}=\mathrm{AC}$, .(Given) $\therefore \mathrm{CD}=\mathrm{BD}$
Q. 26	A solid is composed of a cylinder with hemispherical ends. If the whole length of the solid is 100 cm and the diameter of the hemispherical ends is 28 cm , find the cost of polishing the surface of the solid at the rate of 5 paise per sq cm.Sol. Radius of hemisphere, $r=14 \mathrm{~cm}$.Length of cylindrical part (h) $=[100-2(14)]=72$ cm . Radius of cylindrical part $=$ Radius of hemispherical ends, $r=14 \mathrm{~cm}$ Total area to be polished $=2$ (C.S.A. of hemispherical end) + C.S.A. of cylinder

$2\left(2 \pi r^{2}\right)+2 \pi r \cdot h=2 \pi r(2 r+h)=2 \times \frac{22}{7} \times 14(2 \times 14+72)=88(28+72)=8800 \mathrm{~cm}^{2}$ Cost of polishing the surface $=8800 \times 0.05=$ Rs. 440
Q. 27 Find the area of the quadrilateral whose vertices taken in order are A (-5, - 3), B (-4, - 6), C (2, - 1) and D (1, 2).Sol. Construction : Join B Proof : Area of quad. $\mathrm{ABCD}=$ Area of $\triangle \mathrm{ABD}+$ Area of $\triangle \mathrm{BCD}$ Using area of Δ

$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \operatorname{ar}(\Delta \mathrm{ABD})=\frac{1}{2}[-5(-6-2)-4(2+3)+1(-3+6)]$ $=\frac{1}{2}[-5(-8)-4(5)+1(3)]=\frac{1}{2}(40-20+3)=\frac{1}{2}(23)=\frac{23}{2}$ units $^{2} \operatorname{ar}(\mathrm{ABCD})$ $=\frac{1}{2}[-4(-1-2)+2(2+6)+1(-6+1)]=\frac{1}{2}[4(-3)+2(8)+1(-5)]=\frac{1}{2}(12+16-5)=\frac{1}{2}(23)=\frac{23}{2}$ units $^{2} \therefore$ Area of quad. $\mathrm{ABCD}=\left(\frac{23}{2}+\frac{23}{2}\right)=23$ units 2
Q. 28

A vertical tower stands on a horizontal plane and is surmounted by vertical flag staff of height 5 meters. At a point on the plane, the angle of elevation of the bottom and the top of the flag staff are respectively 30^{0} and 60^{0} find the height of tower. ANS :Let AB be the tower of height h metre and $B C$ be the height of flag staff surmounted on the tower, Let the point of the place be D at a distance x meter from the foot of the tower in $\triangle \mathrm{ABD}$

SECTION - D

Q. 29 A container (open at the top) made up of a metal sheet is in the form of a frustum of a cone of height 16 cm with radii of its lower and upper ends as 8 cm and 20 cm respectively. Find :
(i) the cost of milk when it is completely Filled with milk at the rate of Rs. 15 per litre.
(ii) the cost of metal sheet used, if it costs Rs. 5 per $100 \mathrm{~cm}^{2}$. (Take $\pi=3.14$)Sol. The container is in the shape of a frustum of a cone $. h=16 \mathrm{~cm}, r=8 \mathrm{~cm}, \mathrm{R}=20 \mathrm{~cm}$

Volume of the container $=\frac{1}{3} \times \pi h\left(\mathrm{R}^{2}+\mathrm{Rr}+\mathrm{r}^{2}\right)=\frac{1}{3} \times 3.14 \times 16\left[(20)^{2}+20(8)+(8)^{2}\right] \mathrm{cm}^{3}$

$$
\begin{aligned}
& =\left(\frac{1}{3} \times 3.14 \times 16 \times 624\right) \mathrm{cm}^{3} \\
& =(3.14 \times 3328) \mathrm{cm}^{3} \\
& =10449.92 \mathrm{~cm}^{3} \\
& =\frac{10449.92}{1000} \text { litres } \quad\left[\begin{array}{l}
1 \text { litre }=1000 \mathrm{~cm}^{3} \\
1 \mathrm{~cm}^{3}=\frac{1}{1000} \mathrm{lts}
\end{array}\right]
\end{aligned}
$$ $=10.45$ litres (approx.)

(i) Cost of milk $=10.45 \times$ Rs. 15
$=$ Rs. 156.75 Now, slant height of the frustum of cone $. \mathrm{L}=\sqrt{h^{2}+(\mathrm{R}-r)^{2}}=\sqrt{16^{2}+(20-8)^{2}}$ $=\sqrt{256+144}=\sqrt{400}=20 \mathrm{~cm}$.

